SYNTHESIS OF (\pm) - AND 15-EPI- (\pm) -10,10-DIMETHYLPROSTAGLANDIN E₁

A. HAMON, B. LACOUME, G. PASQUET and W.R. PILGRIM*

ORCANON R.D. s.à.r.l., Eragny-sur-Epte, 60590-Sérifontaine, France.

(Received in UK 19 November 1975; accepted for publication 4 December 1975)

The therapeutic usefulness of E-type prostaglandins (PGs) is compromised by the rapid metabolic oxidation¹ of the C-15 hydroxyl group, and by the pH-sensitive β -ketol group which easily dehydrates² to give A-type PGs³. We report herein the synthesis of a PG E analogue, 10-dimethyl PG E₁, which does not suffer from the latter type of instability⁴.

2,2-Dimethyl-1,3-dione $(\underline{1})^5$,6 was reduced (H_2 , 30°C, 1 atm., PtO₂, 2-propanol) to the ketol ($\underline{2}$) b.p. 73°C/0.2mm (94% yield). Compound ($\underline{2}$) was converted to its tetrahydropyranyl ether (dihydropyran, methylene chloride, trace of p-toluenesulfonic acid) and then alkylated with methyl carbonate (2 equiv.) and sodium hydride in benzene to give ($\underline{3}$). Treatment of ($\underline{3}$) with methyl-7-bromo-heptanoate (1.2 equiv.) and sodium hydride (1.2 equiv.) in dimethylformaride at reflux for two hours gave ($\underline{4}$) which after base (20% ethanolic KOH, reflux 20 minutes) then acid (30% methanolic HCl, reflux two hours) treatment yield the PG precursor ($\underline{5}$).

* Present address: I.C.I. PHARMA, Z.I.S.E., B.P. 401, 51064 REIMS, FRANCE.

Bromination of $(\underline{5})$ with bromine (1 equiv.) in chloroform containing 0.01 % hydrogen bromide, followed by dehydrobromination with sodium hydroxide (3 equiv.) in methanol gave the cyclopentenone $(\underline{6})$ in an overall yield of 32 % from ketol $(\underline{2})$. Compound $(\underline{6})$ has m.p. $65\text{-}66^{\circ}\text{C}$ (from diisopropyl ether); λ max. (EtOH) 223 nm, ϵ 7300. Esterification of $(\underline{6})$ with diazomethane followed by reaction with nitromethane in methanol containing sodium methoxide (2 equiv.) gave a mixture of epimers $(\underline{7})$ and $(\underline{8})$ which was easily separated (silica gel, 1:1 diethyl ether/pentane). Compound $(\underline{7})$, m.p. $85\text{-}88^{\circ}\text{C}$, was obtained in 51 % yield based on unreacted $(\underline{6})$; the less polar $(\underline{8})$, an oil, was obtained in 30 % yield. The stereochemistry of these compounds was established by 90 MHz H¹ n.m.r. (Table)⁷.

	<u>т ав</u>	L E
90 MHz n.m.	r. spectra obtained in CD	Cl ₃ solution at room temperature.
C	(7)	Compound (8)
	Chemical sh	ift (ppm)
н - 8	2.08	2.18
H - 11	3.84	7+ • 0
H - 12	2.62	2.9
H - 13 } H - 14 }	,	4.88
H - 14 }	4.7	4.5
	Coupling Con	stants (Hz)
^J 8,12	12	12
^J 11,12	10	4
^J 12,13 } J _{12,13} ,		9.5
J _{12 13} ,	5.5	4.8

Compound ($\underline{\gamma}$) was converted to aldehyde ($\underline{9}$) in 86 % yield by a modified Nef reaction⁸. In the n.m.r., the H-11 doublet moves down ield to 4.1 ppm, and the coupling constant $J_{11,12}$ of 9 Hz shows that the stereochemistry of the nitromethylene precursor has been retained. Wittig-Horner reaction of ($\underline{9}$) with the sodium salt of dimethyl 2-oxoheptylphosphonate⁹ gave ($\underline{10}$) in

64 % yield after silica gel chromatography. A coupling constant of 16 Hz $(J_{13,14})$ establishes the <u>trans</u> configuration of the double bond. Selective reduction of the C-15 ketone function of $(\underline{10})$ was obtained using lithium tri-sec-butylborohydride (L-Selectride, 1 equiv.) in tetrahydrofuran at -78°C. The two epimers $(\underline{11a})$, m.p. 50-52°C $(\underline{42}$ % yield) and the less polar $(\underline{12a})$, an oil (30 % yield) were easily separated by silica gel chromatography and have virtually identical 90 MHz n.m.r. spectra. Assignment of the configurations at C-15 is based on the relative polarities on silica gel of $(\underline{11a})$ and $(\underline{12a})$ and of $(\underline{11b})$ and $(\underline{12b})$, compared with those of PG E_1 , 15-epi-PG E_1 and their methyl esters. Biological potencies of the final compounds provide support for these assignments¹⁰. The esters $(\underline{11a})$ and $(\underline{12a})$ were saponified in methanolic potassium hydroxide at reflux, followed by acidification and extraction to yield racemic 10,10-dimethyl PG E_1 $(\underline{11b})$, m.p. 99-101°C, and its less polar C-15 epimer $(\underline{12b})$, an oil, each in greater than 95 % yield.

R = H

REFERENCES AND NOTES

- 1) M, HAMBERG and B. SAMUELSON, J. Biol. Chem. 246, 6713 (1971).
- N.H. ANDERSON, J. Lip. Res., <u>10</u>, 320 (1968).
 T.J. ROSEMAN, B. SIMS and R.G. STEHLE, Amer. J.: Yosp. Pharm., <u>30</u>, 236 (1973).
 R.M. ZUSMAN, Prostaglandins, <u>1</u>, 167 (1972).
- 3) E.W. YANKEE and G.L.BUNDY, J. Amer. Chem. Soc. 94,3651 (1972).
- 4) Since the completion of this work a synthesis of 10,10-dimethylprostaglandin F₁ (as its methyl ester) has been reported: O.G. PLANTEMA, H. de KONING and H.O. HUISMAN. Tetrahedron Letters,2645 (1975).
- 5) W.C. AGOSTA and A.B. SMITH, J. Org. Chem., 35, 3856 (1970).
- 6) Each numbered compound has been characterised by H¹ n.m.r. spectra. Compounds 6, 7, 8, 11a, 11b, 12a and 12b have been additionally characterised by elemental analyses (crystalline compounds) and high resolution mass spectra. The yields quoted are for pure products.
- 7) For comparison see:
 M. MIYANO, C.R. DORN and R.A. MUELLER, J. Org. Chem., <u>37</u>, 1810 (1972).
 M. MIYANO and C.R. DORN, J. Org. Chem., <u>37</u>, 1818 (1972).
- 8) J.E. McMURRY and J. MELTON, J. Org. Chem., 38, 4367 (1973).
- 9) E.J. COREY, I. VLATTAS, N.H. ANDERSON and K. HARDING, J. Amer Chem. Soc. 90 3247 (1968).
- 10) When tested on the isolated rat uterus compounds (11a) and (11b) showed a weak muscular agonistic activity (about 1/1000 that of PG $F_{2\alpha}$); at the same concentration the 15 epimers (12a) and (12b) were inactive.